Schnelle Rauheitsmessung spiegelnder Oberflächen im Labormaßstab

KMU-innovativ
09.11.2016
Erstellt von Verbundprojekts OptOCHar / CoSynth GmbH & Co. KG

BMBF-Verbundprojekt OptOCHar erforscht laserbasierte Messverfahren im Nanometerbereich für Anwendungen in der Metallbearbeitung und Halbleiterindustrie.

Die Überwachung der Rauheit technischer Oberflächen direkt im Fertigungsprozess stellt hohe Anforderungen an Verfahren und Datenverarbeitung. Aufgrund der hohen Auswirkung auf die Qualität des Gesamtergebnisses ist der Bedarf an Lösungen für eine schnelle Rauheitsmessung sehr hoch. Rauheit wird nach DIN-Standard taktil gemessen, was mit einigen Nachteilen wie Zeitaufwand und Beschädigung der Oberfläche einhergeht. Auch alternative optische Messverfahren erfordern einen ruhigen Messort, insbesondere bei spiegelnden Oberflächen.

Im vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojekt OptOCHar wird ein neuartiges Verfahren für die flächenhafte optische Rauheitsmessung für den direkten Einsatz im Produktionsprozess konzipiert, das alle genannten Nachteile vermeidet.

Erster Demonstrator für Oberflächencharakterisierung mit Streulicht-Sensoren erreicht 600Hz Messtakt

Das im Projekt OptOCHar erforschte Laserstreulicht-Messverfahren der Universität Bremen ist prädestiniert für die flächenhafte Charakterisierung von metallischen, spiegelnden Oberflächen. Die Auswertung analysiert Digitalbilder von Laserreflexionen, die auch in unruhiger Umgebung, etwa im Fertigungsprozess, aufgenommen werden können. Das Verfahren nutzt dabei besondere Eigenschaften des Laserlichts aus, um Rauheiten im Nanometerbereich zu erkennen. Ziel ist eine möglichst vollständige Charakterisierung von großen, schnell bewegten Oberflächen.

Im Projekt wurde nun der Labordemonstrator zur Projekthalbzeit vorgestellt. Mit dem Demonstrator wurde die grundsätzliche Machbarkeit des Verfahrens gezeigt, vor allem aber wurden auch wichtige Meilensteine bezüglich der Kennzahlen des Sensorsystems erreicht. Mit über 600 Bildern pro Sekunde verarbeitet die bei der CoSynth GmbH & Co. KG entwickelte FPGA-Auswerteeinheit bereits weit mehr Daten als ursprünglich geplant und hat noch Potenzial nach oben. Die so verarbeitete Fläche liegt bei über 40.000 mm²/s.

Das System eignet sich so hervorragend für die vorgesehenen Anwendungsfälle großer und schnell bewegter Oberflächen. Auf hoch spiegelnden Metalloberflächen mit Rauheiten im Bereich um Ra = 20 nm konnten Auflösungen von 2 nm im Ra-Wert-Äquivalent erreicht werden. Unter Wiederholbedingungen ist die Messunsicherheit deutlich geringer als 1 nm.

Für die beiden Anwendungsfälle des Projekts wird der Labordemonstrator in den nächsten Monaten auf den Einsatz im Fertigungsprozess vorbereitet. Beim assoziierten Partner Tata Steel Plating Hille & Müller GmbH wird das System an polierten Walzen und direkt in der Stahlblechveredelung evaluiert. Für die schnelle, flächenhafte Analyse von Oberflächen in stationären Messgeräten wird das System bei der FRT GmbH vorbereitet.

Durch die Robustheit und Schnelligkeit bei gleichzeitig extrem hoher Auflösung bietet sich das Verfahren für viele Bereiche an. Im Projekt werden u.a. die Halbleiterindustrie, die Solarindustrie, die Medizintechnik, die Stahlproduktion und die metallverarbeitende Industrie adressiert. Nach Projektende werden die Verbundpartner den Sensor zur Serienreife bringen und in unterschiedlichen Konfigurationen auf den Markt bringen.

Das mit knapp 1,4 Millionen Euro durch die BMBF-Initiative "KMU-innovativ: Photonik / Optische Technologien" geförderte Projekt läuft seit März 2015. Die Verbundpartner CoSynth GmbH & Co. KG aus Oldenburg, FRT GmbH aus Bergisch Gladbach, Bremer Institut für Messtechnik, Automatisierung und Qualitätswissenschaft (BIMAQ) und als assoziierter Anwendungspartner Tata Steel Plating Hille & Müller GmbH aus Düsseldorf forschen insgesamt drei Jahre an dem Thema und werden Anfang 2018 die Ergebnisse präsentieren.

Ansprechpartner

Christian Stehno
Telefon 0441/36116-756
stehno(at)cosynth.com
CoSynth GmbH & Co. KG
Marie-Curie-Straße 1
26129 Oldenburg