OIFA

Optische Inline-Fluid-Analyse basierend auf MIR-Laserstrahlquellen - OIFA

KMU-innovativ: Photonik

Die Photonik zählt mit etwa 140.000 Beschäftigten und einem Jahresumsatz von 28 Milliarden Euro zu den wesentlichen Zukunftsfeldern, die die Hightech-Strategie der Bundesregierung adressiert. Forschung, Entwicklung und Qualifizierung nehmen dabei eine Schlüsselrolle ein, denn Investitionen in Forschung, Entwicklung und Qualifizierung von heute, sichern Arbeitsplätze und Lebensstandard in der Zukunft. Besondere Bedeutung nehmen hier KMU ein, die nicht nur wesentlicher Innovationsmotor sind, sondern auch eine wichtige Nahtstelle für den Transfer von Forschungsergebnissen aus der Wissenschaft in die Wirtschaft darstellen. Sowohl in etablierten Bereichen der Photonik als auch bei der Umsetzung neuer Schlüsseltechnologien in die betriebliche Praxis hat sich in den letzten Jahren eine neue Szene innovativer Unternehmen herausgebildet, die es zu stärken gilt. Industrielle Forschungs- und vorwettbewerbliche Entwicklungsvorhaben tragen dazu bei, die Innovationsfähigkeit der kleinen und mittleren Unternehmen in Deutschland zu stärken.

Die KMU sollen insbesondere zu mehr Anstrengungen in der Forschung und Entwicklung angeregt und besser in die Lage versetzt werden, auf Veränderungen rasch zu reagieren und den erforderlichen Wandel aktiv mit zu gestalten. Die Ergebnisse der Forschungsvorhaben finden breite Anwendung im Maschinen- und Anlagenbau, in der Materialbearbeitung sowie in den Bereichen Automotive, Sicherheitstechnik, Beleuchtung und Medizintechnik.

Prozessoptimierung und Kostensenkung mittels optischer Inline-Fluid-Analyse

Im Alltag unserer modernen Welt sind technisch hochkomplizierte Produkte seit Jahrzehnten unentbehrlich geworden. Die dahinter stehenden Herstellungsprozesse wurden dabei stetig weiter entwickelt, wobei das Augenmerk neben der Produktqualität zunehmend auch auf eine möglichst effiziente und umweltschonende Herstellung gelegt wird. Produktverunreinigungen oder eine toxische Belastung von Abfallprodukten sind über eine Verbesserung der Prozessregelkreisläufe bestmöglich zu vermeiden. Insbesondere in den umsatzstarken wirtschaftlichen Bereichen würde sich eine solche Modifizierung der Herstellungsverfahren ökonomisch und ökologisch signifikant auswirken. Grundvoraussetzung für diese Optimierungsvorgänge sind jedoch geeignete und möglichst universell anwendbare sensorische Methoden und Geräte, an die immer höhere Ansprüche gestellt werden. Die am Markt befindlichen Geräte sind in vielen Fällen gänzlich ungeeignet oder zumindest zu langsam und unempfindlich bezüglich der notwendigen Nachweisgrenzen.

Schnelle und empfindliche Messung geringster Verunreinigungen in Fluiden

Im Rahmen des beantragten OIFA-Vorhabens soll erstmalig eine neuartige, hochempfindliche und extrem schnelle optische Messtechnik realisiert werden, die universell zur Messung verschiedenster Fluide, d.h. Gase und Flüssigkeiten eingesetzt werden kann. Auf eine aufwendige Probenvorbereitung oder Entnahme kann ebenso verzichtet werden wie auf die typische Infrastruktur zum Betrieb von Laboranalysegeräten (z.B. klimatisierte Räume). Stattdessen soll die neue Messtechnik direkt am Ort des Entstehens der nachzuweisenden Substanzen eingesetzt werden können, beispielsweise im/am Prozessmedium führenden Gasrohr (inline). Ermöglicht wird das vorgeschlagene Messkonzept unter anderem durch erst seit kurzem verfügbare, kompakte und einfach zu betreibende Infrarot-Laser, die 1994 erfunden und in den vergangenen Jahren von verschiedenen Herstellern marktreif gemacht wurden. Diese stecknadelkopfgroßen Laser emittieren Licht im mittleren Infrarotbereich (MIR) und eignen sich somit hervorragend zur Messung von einer Vielzahl von Substanzen, die in diesem Spektralbereich das Licht absorbieren und somit in dem dazugehörigen Messgerät zu einer entsprechenden auswertbaren Signaländerung führen. Dabei sind geringste Konzentrationen im parts-per-billion Bereich nachweisbar. D.h. bei einer Verdünnung der nachzuweisenden Substanz im Verhältnis 1:1 Milliarde ist sie noch immer messbar. Diese herausragende Empfindlichkeit, gepaart mit der schnellen Messung ist das Alleinstellungsmerkmal der hier vorgeschlagenen Technologie und eröffnet ganz neue Möglichkeiten für die Messung von Substanzen, die in geringsten Mengen bereits große Auswirkungen auf industrielle Prozesse, die Umwelt und nicht zuletzt den Menschen haben können. In Kombination mit dem Wissen um den Aufbau robuster optischer Messtechnik für den industriellen Einsatz und unter Mitwirkung eines potentiellen späteren Anwenders soll zielstrebig ein Beitrag zur Schließung der oben genannten Marktlücke für hochempfindliche und schnelle optische Sensoren geleistet werden. Zur Beurteilung der industriellen Verwertbarkeit werden im Laufe des Projektes entsprechende Demonstratoren aufgebaut und im industriellen Umfeld getestet.

Das erste Anwendungsfeld für die Messtechnik wird gemeinsam mit BASF SE als assoziiertem Partner auf dem Gebiet der Überwachung und Optimierung chemischer Großanlagen, insbesondere der Messung von Katalysatorgiften in Prozessgasen, betreten. Als erste Applikation wird die schnelle Messung (elektronische Messzeit 1 s) von weniger als 10 ppb Kohlenmonoxid in brennbaren Gasen wie Wasserstoff, Ethen oder Propen unter hohem Druck und bei hoher Temperatur adressiert. Nach einer erfolgreichen Erprobung der Demonstratoren im Labor und dem Verifizieren aller sicherheitsrelevanten Parameter werden die Geräte auch unter realen Betriebsbedingungen in den Produktionsanlagen der BASF in Ludwigshafen getestet. Zu einem späteren Zeitpunkt sollen weitere Anwendungen in anderen Technologiegebieten, wie beispielsweise der Medizin- und Umwelttechnik, adressiert werden.

Projektdetails

Koordinator

Dr.Markus Nägele
Optoprecision GmbH
Auf der Höhe 15, 28357Bremen
+49 421 94961-31

Projektvolumen

924.661 € (ca. 43,7 % Förderanteil durch das BMBF)

Projektdauer

01.06.2012 - 31.05.2015

Projektpartner

Optoprecision GmbHBremen
MERCK Kommanditgesellschaft auf Aktien - PM-ABE-RDDarmstadt